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ABSTRACT: In the midlatitudes, storm tracks give rise to much of the high-impact weather, including precipitation and

strong winds. Numerous metrics have been used to quantify storm track activity, but there has not been any systematic

evaluation of how well different metrics relate to weather impacts. In this study, two frameworks have been developed to

provide such evaluations. The first framework quantifies the maximum one-point correlation between weather impacts at

each grid point and the assessed storm track metric. The second makes use of canonical correlation analysis to find the best

correlated patterns and uses these patterns to hindcast weather impacts based on storm trackmetric anomalies using a leave-

N-out cross-validation approach. These two approaches have been applied to assess multiple Eulerian variances and

Lagrangian tracking statistics for Europe, using monthly precipitation and a near-surface high-wind index as the assessment

criteria. The results indicate that near-surface storm track metrics generally relate more closely to weather impacts than

upper-troposphericmetrics. For Eulerianmetrics, synoptic time scale eddy kinetic energy at 850 hPa relates strongly to both

precipitation and wind impacts. For Lagrangian metrics, a novel metric, the accumulated track activity (ATA), which

combines information fromboth cyclone track frequency and amplitude, is found to be best correlated with weather impacts

when spatially filtered 850-hPa vorticitymaxima are used to define cyclones. The leading patterns of variability forATA are

presented, demonstrating that this metric exhibits coherent large-scale month-to-month variations that are highly corre-

lated with variations in the mean flow and weather impacts.
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1. Introduction
Extratropical cyclones and their associated fronts are re-

sponsible for much of the high impact and extreme weather

over the midlatitudes (e.g., Ma and Chang 2017), including

precipitation extremes that can lead to inland flooding (Pfahl

andWernli 2012; Kunkel et al. 2012), high wind events that can

cause property damages and casualties (e.g., Ashley and Black

2008; Donat et al. 2010), storm surges that give rise to coastal

inundating (e.g., Colle et al. 2008), and extreme cold events

(e.g., Kocin et al. 1988). All these adverse weather events have

caused significant economic losses and fatalities in the past

(e.g., Berko et al. 2014), includingmultiple events that incurred

over U.S. $1 billion of damages (NOAA NCEI 2020).

Apart from their weather impacts, synoptic transient eddies

that make up the storm tracks are responsible for much of the

poleward momentum, heat, and moisture transport across the

midlatitudes (e.g., Peixoto and Oort 1992), helping to maintain

and shape Earth’s climate. Moreover, variations in storm track

activity drive and feed back upon variations in the large-scale

circulation, including jet shifts (e.g., Lorenz and Hartmann

2001) and the North Atlantic Oscillation (NAO; e.g., Benedict

et al. 2004).

Given its huge impacts on weather and climate, numerous

metrics have been developed to quantify storm track activity

(e.g., Chang et al. 2002; Hoskins and Hodges 2002). These

metrics generally fall into two categories: Eulerian eddy

variance/covariance statistics (e.g., Blackmon 1976), and

Lagrangian cyclone track statistics (e.g., Klein 1958). These

two types of metrics provide different perspectives on storm

track variability. Eulerian eddy statistics such as geopotential

height variance, eddy kinetic energy, and eddy heat and mo-

mentum fluxes relate directly to eddy forcing and feed back to

the large-scale flow (e.g., Lorenz and Hartmann 2001), while

Lagrangian statistics such as cyclone frequency and amplitude

relate more closely to daily synoptic weather situations and are

more familiar and intuitive to weather forecasters.

The use of so many different metrics by different scientists

can give rise to some confusion, in that different metrics may

exhibit variability and change that are not always consistent.

As an example, Chang et al. (2012) examined future changes in

storm track activity as projected by models participating in

phase 5 of the Coupled Model Intercomparison Project

(CMIP5) and found that in the Northern Hemisphere, storm

track activity as quantified by 300-hPa meridional velocity

variance indicates a poleward shift and increase in activity,

while based on sea level pressure (SLP) variance statistics a

decrease in activity is projected. As another example, Chang

(2014) showed that even using the same cyclone tracking al-

gorithm to compile cyclone track statistics, how one defines a

cyclone—based either on minima in total SLP [as in Mizuta

(2012)] or on spatially filtered SLP that filters out the large-

scale features and retains only synoptic-scale features [as in

Chang et al. (2012) and Hoskins and Hodges (2002)]—can

result in future projections that exhibit opposite signs in the

Pacific.

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JCLI-D-20-

0393.s1.

Corresponding author: Edmund Chang, kar.chang@stonybrook.edu

1 DECEMBER 2020 YAU AND CHANG 10169

DOI: 10.1175/JCLI-D-20-0393.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:26 PM UTC

https://doi.org/10.1175/JCLI-D-20-0393.s1
https://doi.org/10.1175/JCLI-D-20-0393.s1
mailto:kar.chang@stonybrook.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


To alleviate this problem, one might argue that one should

always examine multiple storm track metrics as done by

Hoskins and Hodges (2002), who examined Eulerian and

Lagrangian storm track statistics computed based on 12different

variables. In several recent studies we have indeed examined

variability and changes found in multiple storm track metrics

(e.g., Chang et al. 2012; Chang andYau 2016). Nevertheless, this

is not always practical—even Hoskins and Hodges (2002) could

only display selected statistics from some of these variables—and

might provide conflicting information, which may be confusing as

in the situation described by Chang (2014).

An alternative strategy is to focus on a small number of

metrics that have been verified to be highly relevant to one’s

application. For example, for application to wave–mean flow

interactions, one might focus on Eulerian variance and co-

variance statistics such as eddy heat and momentum fluxes. On

the other hand, if the focus is on the weather impacts of storm

tracks, one might want to focus on metrics that are highly

correlated to variations in precipitation or frequency of high

wind events. For example, Chang et al. (2015) showed that

observed variability and projected changes in winter precipi-

tation in California are highly correlated with variability in an

Eulerianmetric defined by bandpass filtered SLP variance over

eastern Pacific. Ma and Chang (2017) found that variability in

the same metric over North America highly modulates the

frequency of occurrence of extreme cold, extreme wind, and

extreme precipitation events over the Ohio Valley and the

Pacific Northwest. Paciorek et al. (2002) showed that the fre-

quency of strong cyclones is significantly correlated (point-

wise) to precipitation and the frequency of strong winds in

some regions. Nevertheless, the correlations that Paciorek

et al. (2002) found are relatively modest in most locations.

While these studies have found metrics that are significantly

correlated with weather impacts, they have only examined a

small number of metrics, and thus there are likely othermetrics

that correlate better with weather impacts. In this study, we

propose two frameworks to systematically evaluate different

storm track metrics based on their correlation with weather

impacts including precipitation and occurrence of strong winds.

The first framework involves finding the maximum point-by-point

correlation between weather impacts and any storm track metric.

Since the relationship between storm track activity and its weather

impacts is not necessarily pointwise, we developed an alternative

framework using canonical correlation analysis (CCA; see Barnett

and Preisendorfer 1987; Chang and Fu 2003) to find the most

highly correlated pairs of patterns. In addition, cross-validation is

utilized to avoid overfitting due to the limited number of degrees of

freedom in time. We have applied these two frameworks to assess

multiple Eulerian and Lagrangian metrics and found several

metrics that are better correlated with weather impacts than those

described above.

Among Eulerian metrics, we found that eddy kinetic energy

(EKE) at the 850-hPa level is in most regions better correlated

with weather impacts than SLP variance, while variance of

pressure vertical velocity v at 700 hPa is best correlated with

precipitation. For Lagrangian metrics, we developed a novel

metric—accumulated track activity (ATA)—that combines

cyclone track density and amplitude (based on tracking 850-hPa

vorticity maxima) together that performs better than either cy-

clone track density or cyclone amplitude and is less noisy. These,

and other, metrics will be described in more detail in section 2.

The frameworks we developed will be described in section 3. In

this study, we will apply these frameworks to assess the rela-

tionship between storm track activity and weather impacts over

Europe as quantified by multiple metrics, and the results will be

presented in section 4. In section 5, the leading patterns of storm

track variability over Europe as quantified by ATA, and their

relationship to weather impacts and large-scale circulation, will

be described. A summary and discussion will be presented in

section 6.

2. Data and metrics

a. Data
The main data source for computing storm track metrics is

ERA-Interim reanalysis data (Dee et al. 2011), for the winter

months (December–February) from 1979/80 to 2014/15, a total

of 108months of data. Sincewe aremainly assessing continental-

scale relationships, we use 6-hourly data at a horizontal resolu-

tion of 2.58 3 2.58. For more regional-scale analyses higher-

resolution data should be used. Variables used include SLP,

zonal wind u, meridional wind y, relative vorticity z, v, and geo-

potential height z at several pressure levels. For weather impacts,

the monthly precipitation data from the Global Precipitation

Climatology Project (GPCP; Adler et al. 2003) are used. Over

continental regions, GPCP data are based on gauge observations,

while over oceans satellite data are used.GPCP data are available

at a resolution of 2.58 3 2.58, and this is also the main reason why

this horizontal resolution is chosen for our analyses. For wind

impacts, in this study we make use of a high-wind index derived

from the near-surface 10-m wind product from ERA-Interim

(see below).

b. Metrics

1) EULERIAN STORM TRACK METRICS

Many different Eulerian storm track metrics have been used

to quantify storm track activity. Blackmon (1976) examined

bandpass filtered 500-hPa geopotential height (z500), but many

other variance and covariance statistics have been used since that

time (e.g., Chang et al. 2002; Hoskins and Hodges 2002). Our

previous studies have shown that SLPvariance is highly correlated

with precipitation and extreme wind events over parts of North

America (Chang et al. 2015; Ma and Chang 2017). In this study,

we will discuss evaluations of nine different variance statistics,

namely SLP, z500, y at 850hPa (v850) and 300hPa (v300), eddy

kinetic energy at 850 hPa (EKE850) and 300hPa (EKE300), z at

850hPa (z850) and 300hPa (z300), and v at 700hPa (v700).

To extract synoptic time-scale variance statistics, we use the

simple 24-h difference filter introduced byWallace et al. (1988),

as follows:

Var(SLP)5 [SLP(t1 24 h)2 SLP(t)]2: (1)

In (1), the overbar denotes a time average, in this case over

each month. As discussed in Wallace et al. (1988), (1) can be
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considered a bandpass filter with half power at 1.2 and 6 days,

thus highlighting synoptic time scale variability. Note that 24-h

SLP change statistics have been widely used to quantify

‘‘storminess’’ (e.g., Feser et al. 2015; Alexander et al. 2005).We

have also tested variance computed from several alternative

bandpass filters, including filters constructed similar to those

used by Blackmon (1976) for highlighting 1–6-, 2–8-, and 1–10-

day bands. However, in our limited tests we have not found a

filter that improves the correlations over those provided by the

simple 24-h difference filter, and thus we have used this filter

for all variables.

Note that

EKE8505 1/2[Var(u850)1Var(v850)] (2)

with the variances as defined by (1) filtered using the 24-h

difference filter.

2) LAGRANGIAN STORM TRACK METRICS

To compile Lagrangian track statistics, we use the feature

tracker developed byHodges (1994, 1999) and used byHoskins

and Hodges (2002). We have used this tracker in several pre-

vious studies, including Chang et al. (2012), Chang (2014), and

Chang and Yau (2016). In this study, this tracker has been

applied to track minima in SLP, maxima in z850 and z300, and

minima in v700 (following centers of rising motion). The

tracked variables are summarized in Table 1. Hoskins and

Hodges (2002) applied this tracker by first spatially filtering

the data to retain only scales equivalent to T5–T42, and we use

the same truncation for z850, z300, andv700. For SLP, given the

results of Chang (2014), who showed that tracking statistics for

SLP are sensitive to removal of large-scale low-frequency

background, we define cyclones by two different methods, as

follows. The first way (SLP1) is spatially filtered similar to that of

Hoskins and Hodges (2002), but with a truncation of T5–T70. A

slightly higher wavenumber cutoff of T70 is used for SLP be-

cause SLP data are not as noisy as vorticity. For the second way,

as in Chang and Yau (2016), based on the suggestion of

Donohoe and Battisti (2009), the SLP data are filtered both

spatially and temporally, with the low-frequency monthly mean

SLP first removed to give submonthly transients, and the re-

maining perturbations are filtered to retain only T5–T70 (SLP2).

Tracking is done for all five variables for all winter months and

statistics compiled. As in Hoskins and Hodges (2002), tracks

lasting less than 2 days and with displacement of less than

1000 km are removed from the statistics.

Multiple statistics can be derived from the tracking output.

Following Guo et al. (2017; see also Grise et al. 2013; Sinclair

1997), cyclone frequency at a grid point is defined as the

number of times a cyclone is found within 500 km of the grid

point each month. This is similar to the feature density of

Hoskins and Hodges (2002). In this definition, slow-moving

cyclones can be counted more than once, and fast-moving ones

that pass close to a grid point may be missed if they are never

within 500 km of the grid point during the four synoptic hours.

Cyclone amplitude for each month is the average amplitude of

all cyclone centers that are found within the same distance of

the grid point. On the other hand, track frequency (similar to

track density of Hoskins and Hodges) is defined as the number

of cyclone tracks that pass within 500 km of each grid point. In

this case each cyclone is counted once and only once. We have

also examined track amplitude (average of the maximum

amplitude when a cyclone is within 500 km of each grid point)

and results are similar to those for cyclone amplitude and will

not be discussed here.

Guo et al. (2017) examined how the MJO phases modulated

cyclone activity using both Eulerian and Lagrangian storm

track metrics. They found that anomalies in Lagrangian sta-

tistics including cyclone frequency and amplitude are generally

noisier than those for Eulerian statistics. However, they found

that by combining cyclone frequency and amplitude into a new

metric, which they called the ‘‘accumulated cyclone activity’’

(ACA), the anomalies became less noisy and more like those

found in SLP variance statistics. Inspired by their results, we

also computed ACA by accumulating the amplitude of all cy-

clone centers that are found within 500 km of a grid point for

each month. As with cyclone frequency, this statistic can be

strongly dominated by slow-moving cyclones staying close to a

grid box for extended periods of time. Hence we developed an

TABLE 1. Summary of tracked features and Lagrangian metrics.

Tracked features

SLP1 SLP minima spatially filtered to retain

T5–T70

SLP2 Similar to SLP1, but with monthly mean

removed

z850 z850 maxima spatially filtered to retain

T5–T42

z300 z300 maxima spatially filtered to retain

T5–T42

v700 v700 minima (rising motion) spatially

filtered to retain T5–T42

Metrics

Cyclone amplitude Average value of the amplitude of all

cyclone centers that are located within

500 km of each grid point at the 6-

hourly synoptic times for the month

Cyclone frequency Number of times per month when a

cyclone center is located within 500 km

of each grid point at the 6-hourly

synoptic times (each cyclone can be

counted multiple times)

Track frequency Number of times per month when a

cyclone track passes within 500 km of

each grid point (each cyclone is

counted once)

ACA Accumulated cyclone activity: The sum of

the amplitude of all cyclone centers that

are located within 500 km of each grid

point at the 6-hourly synoptic times

(each cyclone can be counted

multiple times)

ATA Accumulated track activity: The sum of

the maximum amplitude of every

cyclone that passes within 500 km of

each grid point (each cyclone is

counted once)
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alternative novel metric, which we call the ‘‘accumulated track

activity’’ (ATA). For this case, each cyclone (or feature)

passing within 500 km of a grid point is only counted once,

using its maximum amplitude during the timewhen the cyclone

is within 500 km of the grid point. This amplitude is determined

by linearly interpolating the 6-hourly cyclone track positions

and amplitudes into hourly values. For each of the five defi-

nitions of cyclones, we evaluated five statistics: cyclone fre-

quency, cyclone amplitude, track frequency, ACA, and ATA.

Hence we have evaluated a total of 25 different Lagrangian

statistics. Each of these statistics is computed on a hemispheric

2.58 3 2.58 grid. More details about these Lagrangian statistics

will be presented in section 5 below.

Previous studies (e.g., Neu et al. 2013) have found that

tracking statistics can be sensitive to the tracking algorithm

used. Here, we tested the sensitivity by using a very simple

tracker that we have developed ourselves, simply by linking

together features that are closest to each other and within

500 km of each other over consecutive 6-hourly periods.

Similar statistics are compiled for tracking z850 and SLP1, and

the results are compared to those generated using the Hodges

tracking algorithm. Statistics generated by our simplistic

tracker produced qualitatively similar results, providing similar

rankings of the tracking metrics as those generated by the

Hodges algorithm, except that the correlations between the

storm track metrics and weather impacts are systematically

lower (see discussions and figures in the online supplemental

material). While the results show some sensitivity to the

tracker, it is comforting to see that statistics generated using a

more sophisticated tracker generally outperform those gener-

ated by a simple tracker, and that the main conclusions are

supported by results provided by the simple tracker. We have

also tested the sensitivity of the results to the distance used to

accumulate cyclone statistics, and found that if we either in-

crease or decrease the distance (from 500 km) by 10%, the

resulting correlations between the Lagrangian storm track

metrics and weather impacts are practically unchanged.

3) METRICS FOR WEATHER IMPACTS

As mentioned above, for precipitation, monthly GPCP

precipitation data are used. We have also used ERA-Interim

model generated precipitation product for comparison (not

shown) and generally obtained qualitatively similar results,

except that correlations between the storm track metrics and

ERA-Interim precipitation are generally higher than those

with GPCP, especially over the oceans. We assessed monthly

precipitation data here because we would like to use an ob-

servational dataset that has global coverage. The methods

discussed in this paper will be applied to examine precipitation

extremes in future studies.

For wind impacts, instead of a fixed wind speed threshold

for everywhere, previous studies (e.g., Paciorek et al. 2002;

Alexandersson et al. 1998) have suggested that a fixed per-

centile at each location may be more useful, since building

structures will generally be built to adapt to the local clima-

tological wind conditions. Here, we use the value of the 95th

percentile wind speed for each month based on ERA-Interim

10-m wind at each grid point to be our strong wind index. As

suggested by Paciorek et al. (2002), this is not intended to

represent the true wind, but is used as an indicator that strong

wind conditions are expected when this index is large. In

practice, the sixth strongest wind speed from each month is

taken to be the high wind index for that month. Given that

anomalies are computed as deviations from monthly clima-

tology, the difference in the number of observations for each

month is not expected to give rise to significant biases.

To test the sensitivity to the weather impacts dataset, we

have also used monthly precipitation and 6-hourly 10-m winds

generated by the National Center of Environmental Prediction–

National Center for Atmospheric Research (NCEP–NCAR)

reanalysis data for some of our analyses. Results are very similar

to those obtained using ERA-Interim data and will not be

presented here.

3. Frameworks for assessing metrics

a. Maximum correlation
As discussed above, Chang et al. (2015) found that month-

to-month precipitation variations over Southern California are

highly correlated to those of Var(SLP) over the eastern Pacific.

Here the correlation between monthly mean precipitation

anomalies at a grid box over Ireland (53.758N, 8.758W) with

Var(SLP) at all grid boxes over eastern Atlantic and Europe is

shown in Fig. 1a. The maximum correlation is over 0.7 located

just to the northwest of the grid box. Similar correlations are

shown for a grid box over southern France (43.758N, 6.258E) in
Fig. 1b. For this grid box, the maximum correlation is slightly

lower (,0.7) and with storm track activity located about

1000 km west-southwest of the grid box. This location is

physically reasonable, since for a grid box on the south coast of

France, cyclones located to its west would lead to southerly

flow toward this location, bringing in moisture over the

Mediterranean (e.g., Nuissier et al. 2011).

Different relationships are found at different geographical

locations. To summarize results for the entire Northern

Hemisphere, similar correlation maps are computed for each

grid box, and the highest correlation between precipitation

anomalies and Var(SLP) within a region of 608 longitude and

208 latitude centered about the grid box is found and plotted at

the location of the grid box (Fig. 2a). This map shows the lo-

cations where precipitation anomalies are highly correlated

with Var(SLP) nearby.We call this maximum correlation score

CORMAX below. Conceptually, this is similar to the tele-

connectivity map of Wallace and Gutzler (1981), but here we

apply this concept to correlate two different variables and find

the maximum positive correlation instead of the minimum

negative correlation. In general, highest CORMAX (.0.6 or

0.7) is found over the eastern parts of ocean basins extending

into the western parts of North America and Europe.

CORMAX is also generally high (.0.5) over much of Europe,

northeastern North America, the east coast of Asia, and parts

of the Middle East and central Asia. CORMAX over oceanic

regions is generally lower. However, higher CORMAX is

found if we use ERA-Interim reanalysis generated precipita-

tion data instead of GPCP precipitation. Overall, the average

value of CORMAX is 0.45 when averaged over the Northern
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Hemisphere midlatitudes (308–758N), and 0.55 over Europe

(108W–458E, 358–708N). These values increase to 0.53 and

0.59, respectively, if ERA-Interim precipitation is used instead.

If NCEP–NCAR reanalysis precipitation is used instead [with

Var(SLP) still computedusingERA-Interimdata], the averaged

CORMAX are 0.51 and 0.57, suggesting that CORMAX is not

very sensitive to the reanalysis dataset used.

Similar correlations have been computed using the monthly

high wind index (95th-percentile wind speed based on ERA-

Interim 10-m wind for each month). Figure 1c shows the cor-

relation of this index for the grid box over Ireland with

Var(SLP). Again, the maximum correlation is over 0.7, but

for a location just to the north-northeast of the grid box. For

the grid box over southern France (Fig. 1d), the maximum

correlation of its high wind index is with storm track activity

located east of the grid box, suggesting that over this location

high winds are more frequent when storms are to the east (e.g.,

Jiang et al. 2003; see also Pfahl 2014).

The CORMAX between Var(SLP) and the high wind index

at all grid boxes are shown in Fig. 2b. Overall, CORMAX is

high over much of the ocean basins, with large areas reaching

values over 0.7. The average value over the NorthernHemisphere

midlatitudes is 0.58, which increases to 0.63 over Europe. Hence

Var(SLP) is more strongly correlated to high winds than pre-

cipitation. Note that we have also computed this highwind index

using NCEP–NCAR reanalysis data and obtained nearly iden-

tical averaged correlations.

Paciorek et al. (2002) computed similar correlations be-

tween their cyclone count index and their wind index. Their

cyclone count index is a nontracking index and counts the

number of cyclones per winter at each grid point. Their ex-

treme wind index uses the 95th percentile of four times daily

wind speeds at the s 5 0.995 level (;40m above the surface)

based on NCEP–NCAR reanalysis data. They computed one-

point correlation between their cyclone index and extreme

wind index, and found relatively modest correlations, with only

small regions showing correlations above 0.5. One difference

between their method and ours is that they used a fixed dis-

placement between the two fields at all locations to compute

the correlations, while we searched for the maximum correla-

tion between the wind index at a grid box and the storm track

metric. Nevertheless, if we use a similar cyclone count index

based on cyclone frequency for tracking SLP1 instead of

Var(SLP), the average value of CORMAX becomes 0.39 for

the Northern Hemisphere and 0.42 for Europe, much lower

than those based on Var(SLP). Hence Var(SLP) correlates

much better with wind impacts than cyclone frequency. The

question is whether there are other Lagrangian metrics

that correlate better with high wind impacts than cyclone

frequency.

Maps similar to Fig. 2 can be generated for any storm track

metric and provide one way to assess the relationship be-

tween each metric and weather impacts. Nevertheless, it is not

clear whether the estimates based on this method represent

FIG. 1. One point correlationmap, between the reference time series andVar(SLP). The reference time series for

each panel is (a) GPCP precipitation at 53.758N, 8.758W (marked by white grid in the panel; same in the other

panels); (b) GPCP precipitation at 43.758N, 6.258E; (c) high wind index at 53.758N, 8.758W; and (d) high wind index

at 43.758N, 6.258E.
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conservative guesses or overestimates. On the one hand, since

the maximum correlation at each grid point is selected, one

might expect that CORMAX represents the upper bound for

the correlation between storm track activity and the weather

impact and thus potentially an overestimate. Nevertheless, it is

possible that precipitation (or high wind) at a grid box may be

related to cyclone activity at two (or more) separate locations,

hence different areas of cyclone activity may contribute to

weather impacts over a single location, with the total storm

track impact potentially explainingmore of the weather impact

than that by the highest correlated grid point alone. Thus an

independent estimate based on CCA has been developed to

provide an alternative assessment.

b. CCA assessment framework
Figure 1 shows that the relationship between Var(SLP) (and

other storm track metrics) with weather impacts is not point-

wise. Hence we would like to assess correlations between pairs

of patterns. One efficient way to do so is CCA. However, since

we only have 108 months of data, the number of temporal

degrees of freedom is likely less than the number of spatial

degrees of freedom, hence there could be spurious remote

correlations and this could lead to overfitting (Barnett and

Preisendorfer 1987). One way to deal with this is by EOF

prefiltering (i.e., performing an EOF truncation prior to con-

ducting the CCA analysis). Nevertheless, it is not always clear

what the correct truncation should be, given that the CCA-

generated correlations increase monotonically when more

EOF pairs are included in the analysis. To overcome this

overfitting issue, we conduct a leave-N-out cross-validation

analysis (N 5 3 in our application) to obtain a conservative

estimate of the correlation between the two fields.

The procedure is outlined in Fig. 3 for assessing precipita-

tion. A similar procedure is separately conducted for assessing

wind impacts. First, a numberM, where 0,M, 36 (the upper

bound is arbitrary as long as it is sufficiently large, but taken to

be 35 here), is selected. For each storm track metric [e.g.,

Var(SLP)] and precipitation, we have 108 pairs of data, one

pair for each month. A CCA model is first constructed using

105 pairs of data, leaving out 3 pairs (one season) of data each

time. Two EOF analyses are conducted separately for the

storm track metric and precipitation. Then both datasets are

truncated to retain M leading EOFs. A CCA model is then

constructed using theseMEOFs following the procedure given

in Barnett and Preisendorfer (1987; see also Chang and Fu

2003). Briefly, an M 3 M cross-correlation matrix is formed

between the leading M PCs, and a singular value decomposi-

tion analysis is conducted on this matrix—the resulting M

singular values are the canonical correlation coefficients, while

theM left and right vector pairs correspond to pairs of patterns

whose time series have correlations that are equal to the ca-

nonical correlation coefficients. This CCA model is then used

to predict precipitation anomalies for the left out 3 months

based on the storm track metric anomalous patterns projected

onto the M EOFs. This procedure is repeated 35 times, each

time leaving out three other pairs (another season) of data to

construct a new CCA model. The resultant 108 predicted

precipitation fields are then assessed using the observed pre-

cipitation anomaly fields. The anomaly correlation coefficient

(ACC) is computed at each grid point. ACC is computed at

each grid box and averaged over the domain to provide a do-

main averaged ‘‘score.’’ In addition, the fraction of variance

explained (FVE) is estimated, as follows:

FVE5 12
MSE

VAR
, (3)

whereMSE is themean square error between the predicted and

observed precipitation, and VAR is the variance of observed

FIG. 2. CORMAX score (see description in text) at each grid box for correlating (a) GPCP precipitation at the grid

box to Var(SLP) and (b) high wind index at the grid box to Var(SLP).
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precipitation at each grid point. The value of FVE is capped by

1 and can be negative, with 1 being a perfect prediction. For

FVE, we also show its value at individual grid boxes. However,

for the domain averaged ‘‘score,’’ the MSE and VAR are first

averaged over the domain, and FVE for the entire domain is

calculated based on (3). Thus these two scores highlight dif-

ferent aspects: the ACC score summarizes the results for all

grid boxes without weighing by the precipitation amounts,

while the FVE score highlights regions where precipitation

variance is large. This entire procedure is then repeated for

other values ofM, with 0,M, 36. Themodel with the highest

averaged score [domain averaged (ACC 1 FVE)/2] is consid-

ered the best fit model, and provides the estimate of the cor-

relation between this particular storm track metric and the

weather impact. Practically, this procedure informs us howwell

we can predict the weather impact if we know the anomalies in

this storm track metric.

To illustrate this procedure, we apply this framework to

assess the relationship between Var(SLP) and GPCP precipi-

tation. We have tried to apply this framework over the entire

hemisphere, but found that regional applications (e.g., over

Europe, the Atlantic, the Pacific, etc.) produced better results,

likely because that with few (108) temporal degrees of free-

dom, there are spurious long distance correlations found

among the leading hemispheric EOFs that tend to degrade the

predictions, and some regional precipitation or storm track

variations could be relegated into high-order EOFs and thus be

filtered out. Since we are assessing impacts, we would like to

first apply this over continental regions. Figure 2 suggests that

among the different continental regions, Var(SLP) and pre-

cipitation appear to be most tightly related over Europe, and

hence in this study wewill first apply this framework toEurope.

The procedure is applied to the area 208W–508E, 258–808N,

with the results assessed in the subregion 108W–458E, 358–708N
since storm track activity adjacent to the region of interest may

still impact the weather over the region (see Fig. 1).

For the relationship between Var(SLP) and GPCP precipi-

tation, both the ACC and FVE scores are maximized at M 5
13, with ACC 5 0.55, FVE 5 0.39, and a mean score of 0.47.

The dependence of all three scores on M is shown in Fig. 4a.

The results are not sensitive to the truncation M; the average

score is higher than 0.46 for allM from 9 to 14. This ‘‘flat peak’’

is a shared feature of all the cases we have analyzed. These

scores increase rapidly fromM5 1 toM5 5, and then increase

slowly to the peak values, after which they slowly decrease likely

due to overfitting. Note that the maximumACC score of 0.55 is

very similar to the value of CORMAX found in section 3a for

the same region. This suggests that the correlation between the

storm track and weather metrics consist of spatially coherent

patterns that can be effectively captured by CCA.

FIG. 3. Schematic of CCA assessment framework (see description in text).
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The spatial patterns for ACC and FVE forM5 13 are shown

in Figs. 5b and 5c, respectively. Both scores are highest over the

Iberian Peninsula, the United Kingdom, and the north shore of

France spreading northeastward toward Scandinavia, with

ACC scores of generally .0.6 reaching 0.8 in some isolated lo-

cations, and explaining up to 60% of the month-to-month pre-

cipitation variance. These regions are consistent with the regions

with highCORMAX(Fig. 5a).However, there are some regions

(e.g., the northern part of France extending intoBelgiumand the

Netherlands) where the ACC is higher than the CORMAX,

suggesting that the CORMAX is not necessarily the upper limit

of the correlation between Var(SLP) and precipitation.

In section 4, the two frameworks described in this section are

applied to other metrics as well as to the high wind index to

assess how closely each metric relates to these weather impacts.

4. Results

a. Eulerian metrics
The summary statistics (scores averaged over Europe) for

the nine Eulerian metrics are presented in Table 2. Results are

generally consistent between the two frameworks. For the

CCA framework, results based on ACC and FVE are also

highly consistent. First, we examine the results for precipita-

tion. Among themetrics evaluated,v700 is best correlated with

precipitation (Table 2). The average CORMAX is 0.67 over

Europe using the first framework, while for the CCA framework

the average ACC score is 0.65, and it explains 50% (FVE5 0.50)

of the variance in the month-to-month precipitation variations

over Europe. EKE850 and Var(z850) are close seconds, with

Var(z850) performing slightly better in terms of CORMAX, but

EKE850 slightly better in terms of FVE.

Comparing the four pairs of upper-level and near-surface

metrics, in all cases near-surface or lower tropospheric metrics

perform better than upper-level metrics. Also, at both levels,

EKE performs slightly better than the variance of y0. These
results also hold for wind impacts.

The geographical distribution of the three scores for

EKE850 and Var(v700) are shown on the middle and right

columns of Fig. 5, respectively. All three metrics [including

Var(SLP)] generally exhibit high scores over the same loca-

tions, with the scores increasing from Var(SLP) to EKE850 to

Var(v700). In particular, over the southwestern part of the

Iberian Peninsula, the western part of the British Isles, parts of

Denmark, and the west coast of Scandinavia, both EKE850

and Var(v700) explain over 60% of the month-to-month pre-

cipitation variance (Figs. 5f,i).

Results for wind impacts are shown on the right four col-

umns of Table 2 and Fig. 6. For wind impacts, EKE850 per-

forms the best, closely followed by Var(SLP), with Var(v700)

also performing well (Table 2). It is not surprising that EKE850

and Var(SLP) perform well on wind impacts, since surface

winds are closely related to lower tropospheric EKE as well as

SLP variations through the geostrophic relationship.

The geographical distributions of the three scores for the

three metrics are shown in Fig. 6. Again, they generally per-

form well over similar regions. Both EKE850 and Var(SLP)

exhibit .0.7 ACC scores and explain over 50% of the wind

index variance over the northern part of continental Europe,

the British Isles, and coastal and southern parts of Scandinavia.

All three do not perform well over southeastern Europe or

Turkey, explaining less than 30% of the variance in these

places.

Overall, among variance metrics, Var(v700) performs best

for precipitation, while doing third best for wind impacts.

EKE850 does best for wind impacts and is second for precip-

itation. Var(SLP) performs nearly as well as EKE850 for wind

impacts but is not as good for precipitation. Given that v is

usually not readily available from climate models, EKE850

may be a good storm track metric to analyze if one’s goal is to

link storm track variations to their weather impacts.

b. Lagrangian metrics
Summary statistics for selectedmetrics are shown in Table 3.

Summary statistics for all 25 Lagrangian metrics examined are

shown in Table S1 in the online supplemental material.

In all cases, track statistics perform better than cyclone

(feature) statistics, with track frequency doing better than cy-

clone frequency, and ATA doing better than ACA in all cases.

ATA also always does better than track frequency, and ACA

better than cyclone frequency, showing that including infor-

mation about amplitude is helpful. ATA always performs best

among the five Lagrangian metrics. Similar to variance statis-

tics, near-surface metrics perform better than upper-level

FIG. 4. Dependence of the ACC and FVE scores on the EOF truncation valueM (abscissa), (a) using Var(SLP) to

hindcast GPCP precipitation and (b) using ATA from tracking z850 to hindcast GPCP precipitation.
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metrics, with z850 outperforming z300. For precipitation, cy-

clone amplitude performs poorly, while track frequency per-

forms only slightly worse than ATA, suggesting that it is the

frequency of cyclones passing close to a region that controls the

monthly precipitation, while cyclone amplitude is secondary,

consistent with the results of Pfahl and Wernli (2012) that ex-

treme precipitation is only weakly related to cyclone strength.

However, for the wind index, cyclone amplitude performs better

than cyclone or track frequency, suggesting that stronger cyclones

give rise to stronger wind impacts which is physically reasonable.

Overall, ATA for z850 tracks performs best among all 25

metrics for both precipitation and high wind index, with the

ACC (0.65) and FVE (50%) scores for precipitation identical

to those for Var(v700), the best Eulerian metric. However, the

results for high winds are not as good as those for the leading

Eulerian metrics including EKE850 and Var(SLP), with the

ACC score being 0.54 and FVE of 36% when averaged

over Europe.

Among the two different ways of defining cyclones based on

SLP, SLP2 (spatial filtering retaining T5–70, and temporal fil-

tering by subtracting monthly mean) performs much worse

than SLP1 (spatial filtering alone with no temporal filtering)

in all cases (Table 3; see also Table S1). This suggests that

removing the low-frequency component by removing the

monthlymean is not beneficial. Nevertheless, more tests should

be conducted to examine whether other ways of removing the

FIG. 5. Results of applying the two frameworks to assess GPCP precipitation for Eulerian metrics: (top) CORMAX score, (middle)

ACC score from the CCA framework, and (bottom) FVE score from the CCA framework. Metric assessed is (a)–(c) Var(SLP), (d)–(f)

EKE850, and (g)–(i) Var(v700).
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low-frequency variability may fare better. Note that tracking

for the other three variables (z850, z300, and v700) examined

in this study is all performed without temporal filtering (similar

to SLP1, except that the spatial truncation retains T5–42

instead).

Spatial distribution of the scores for ATAof SLP1, z850, and

v700 based on the best truncation models are shown in Fig. 7.

Given that the three scores (CORMAX, ACC, and FVE) are

highly consistent, only the results for FVE are shown.

In Fig. 7, the top row shows the results for precipitation.

Clearly, ATAbased on z850 (Fig. 7b) performs better than that

based on either SLP1 (Fig. 7a) or v700 (Fig. 7c). Compared to

Var(v700) (Fig. 5i), results are quite similar, except that ATA

based on z850 does slightly better over the Iberian Peninsula

and north of the Black Sea, while Var(v700) performs better

near the Adriatic Sea and close to France. For the high wind

index (bottom row of Fig. 7), again ATA based on z850

(Fig. 7e) performs better than ATA based on SLP1 (Fig. 7d) or

v700 (Fig. 7f). Comparing to variance statistics (bottom row of

Fig. 6), the values of FVE are generally slightly lower, but all

metrics display qualitatively similar spatial patterns, with

highest scores toward the northwest part of the map and lowest

scores toward the southeast. Note that as discussed above, the

results are not sensitive to the value of the truncation M. For

example, the dependence of ACC and FVE on the value of M

for ATA of z850 is shown in Fig. 4b, again showing a very flat

‘‘peak,’’ even flatter than that for Var(SLP) (Fig. 4a).

Finally, in Fig. 8, we display results based on other Lagrangian

metrics for z850, including those based on cyclone amplitude

(AMP), track frequency (TRF), and ACA. For precipitation (top

row), cyclone amplitude (Fig. 8a) performs poorly, with only

limited areas with FVE higher than 40%—over the Iberian

Peninsula and nearDenmark.ACA (Fig. 8c) does the best among

the three. Track frequency (Fig. 8b) performs quite well also, but

neither does as well as ATA (Fig. 7b). For high wind index

(bottom row), track frequency does not do well (Fig. 8e), with

track amplitude now doing better (Fig. 8d) and performing nearly

as well as ACA (Fig. 8f). Again, both fall a bit short of the per-

formance of ATA (Fig. 7e). Figure 8 confirms that cyclone am-

plitude variability is important for wind impacts, while track

frequency is more important for precipitation. Nevertheless, a

metric that combines both amplitude and frequency, such as

ATA, is more highly correlated with weather impacts.

5. Leading patterns of variability of ATA of z850 over
Europe
In section 4b, we showed that ATA based on tracking pos-

itive centers of z850 is one of the storm track metrics that is

highly correlated to weather impacts (especially precipitation)

over Europe. Since ATA is a novel metric that we have de-

veloped, in this section we will examine some of its properties

including its leading patterns of variability. More information

aboutATA in other geographical locations will be presented in

Part 2 of this series.

Figure 9a shows the winter climatology of ATA. Maximum

activity extends from the downstream end of the Atlantic

storm track into northern Europe and western Russia, with a

secondarymaximumover theMediterranean. This distribution

highly resembles that of track frequency (Fig. 9c), but modu-

lated by amplitude (Fig. 9d), which leads to more emphasis on

the Atlantic storm track and lower amplitude over Russia and

the Mediterranean. Month-to-month variability (Fig. 9b)

highlights the same regions of action. Month-to-month varia-

tions in ATA is highly correlated with that of track frequency,

with correlation coefficient of .0.8 over most regions (not

shown). Correlation with track amplitude is moremodest but is

statistically significant over most regions (Fig. 9f), with the

highest correlation of.0.5 over the eastern Atlantic and parts

of the Mediterranean. Note that correlation between track

frequency and amplitude (Fig. 9e) is generally low, only dis-

playing isolated patches of significant correlation especially

over the eastern Atlantic.

The leading EOF patterns of monthly variations in ATA, as

well as patterns of related fields, are shown by correlationmaps

computed using the leading PCs of ATA variability. While the

EOF analysis is conducted over Europe, the correlations are

shown over the half-hemisphere centered over Europe to ex-

plore the upstream and downstream linkages. Note that the

sign of the EOFs is arbitrary. Also note that we are not sug-

gesting that these EOFs represent different modes of vari-

ability, but that they just represent the most frequently

observed patterns of anomalies over this region.

TABLE 2. Summary statistics for Eulerian metrics. Maximum value in each column is highlighted by bold fonts.

GPCP precipitation High wind index

CCA CCA

Metric CORMAX M ACC FVE CORMAX M ACC FVE

Var(SLP) 0.55 13 0.55 0.39 0.63 14 0.58 0.41

Var(z500) 0.50 13 0.54 0.37 0.55 10 0.53 0.33

Var(v850) 0.61 15 0.61 0.45 0.62 13 0.57 0.38

Var(v300) 0.52 13 0.58 0.41 0.49 10 0.52 0.32

EKE850 0.62 15 0.62 0.46 0.65 12 0.59 0.41
EKE300 0.49 13 0.57 0.40 0.51 10 0.52 0.32

Var(z850) 0.63 24 0.62 0.45 0.58 24 0.55 0.36

Var(z300) 0.44 12 0.52 0.34 0.44 10 0.47 0.26

Var(v700) 0.67 17 0.65 0.50 0.60 13 0.58 0.38
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EOF1 accounts for 21.0% of the variance and exhibits

mainly a dipolar structure (Fig. 10a, shading). The northern

branch of positive anomalies extends across the northern part

of the United Kingdom into Scandinavia, while the southern

branch with opposite sign extends into the Iberian Peninsula.

Farther south, another branch can be seen with positive

anomalies over the subtropical eastern Atlantic as well as to

the southeast of the Caspian Sea. Given that Europe is located

at the downstream side of the Atlantic storm track, it is not

surprising that the leading EOF (as well as EOF2) is dominated

by variations of the Atlantic storm track over eastern Atlantic

(see also Fig. 9b). Anomalies in track frequency (Fig. 10b,

shading) show a highly consistent pattern. Anomalies in track

amplitude (Fig. 10b, contours) are not as widespread, but co-

incide with the peaks of the dipolar structure, contributing to

the high correlations between ATA and PC1 over these re-

gions (Fig. 10a). TheATA anomalies are highly consistent with

those of the large-scale flow. Zonal wind at 300 hPa generally

shows the same sign of anomalies but shifted slightly to the

south (Fig. 10a, contours), while 500-hPa geopotential height

(Fig. 10c, contours) shows patterns consistent with the zonal

wind anomalies. The zonal wind anomalies are quite similar to

those associated with the NAO, which many previous studies

(e.g., Rogers 1997; Chang 2009) have shown to strongly influ-

ence storm track activity over the Atlantic and Europe. In fact,

the correlation between PC1 and the NAO index1 is 0.65.

FIG. 6. As in Fig. 5, but for the high wind index.

1 The NAO index is a rotated-EOF based index obtained from

the Climate Prediction Center (see acknowledgments).
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The ATA anomalies are also largely consistent with the

anomalies in 850-hPa EKE (Fig. 10c, shading), although the

EKE anomalies appear to be slightly broader in spatial scale

and do not show positive anomalies over subtropical eastern

Atlantic. Correlations with other storm track metrics, includ-

ing variance in SLP, are also similar (not shown). Correlations

with weather impacts are shown in Fig. 10d. Precipitation

anomalies (shading) display a dipolar structure very similar to

that displayed by ATA. The high wind index also shows a di-

pole over a similar region, but also shows an extended positive

region over the subtropics over a region larger than that dis-

played by the ATA anomalies.

Similar patterns for EOF2 (accounting for 20.2% of the

variance) based on correlations with PC2 are shown in the right

TABLE 3. Selected summary statistics for Lagrangian metrics. Maximum value in each column is highlighted by bold fonts. For full

summary statistics for all 25 Lagrangian metrics, see Table S1 in the online supplemental material.

GPCP precipitation High wind index

CCA CCA

Tracked feature Metric CORMAX M ACC FVE CORMAX M ACC FVE

SLP1 Amplitude 0.46 12 0.49 0.31 0.48 10 0.50 0.30

Cyclone frequency 0.55 17 0.56 0.37 0.43 10 0.43 0.24

Track frequency 0.58 16 0.59 0.41 0.47 14 0.46 0.26

ACA 0.57 15 0.56 0.38 0.49 11 0.48 0.29

ATA 0.61 22 0.61 0.44 0.54 18 0.53 0.34

SLP2 ATA 0.51 11 0.52 0.36 0.51 10 0.51 0.33

z850 Amplitude 0.43 25 0.50 0.30 0.49 13 0.50 0.31

Cyclone frequency 0.56 16 0.60 0.42 0.41 16 0.45 0.25

Track frequency 0.59 21 0.61 0.46 0.47 11 0.48 0.28

ACA 0.61 16 0.63 0.47 0.49 13 0.51 0.32

ATA 0.64 23 0.65 0.50 0.56 13 0.54 0.36

z300 ATA 0.55 13 0.59 0.43 0.50 13 0.51 0.32

v700 ATA 0.60 15 0.61 0.44 0.48 10 0.46 0.27

FIG. 7. FVE score from applying the CCA framework to assess Lagrangian tracking metrics, for (top) GPCP precipitation and (bottom)

high wind index. The metrics assessed are ATA derived from tracking: (a),(d) SLP1, (b),(e) z850, and (c),(f) v700.
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panels of Fig. 10. The ATA anomalies (Fig. 10e) exhibit a di-

pole that is shifted poleward with respect to that of EOF1.

Relationships to other parameters are very similar, except that

zonal wind anomalies (Fig. 10e, contours) display a significant

negative anomaly over North Africa that is not accompanied

by any significant anomalies in storm track activity or weather

impacts, likely because there is little storm track activity over

that region. Otherwise, over the midlatitudes, for both EOF1

and EOF2, Fig. 10 shows that ATA is highly correlated with

cyclone track frequency and less so with cyclone amplitude

(Fig. 10f). It is also highly correlated with variations in the

large-scale flow (Figs. 10e,g), other storm track metrics in-

cluding 850-hPa EKE (Fig. 10g), and significant weather im-

pacts (Fig. 10h).

Selected correlations for EOFs 3–5 are shown in Fig. 11. For

each of these EOFs, we show the correlations between the PC

with ATA and 300-hPa zonal wind in the left panel, and the

correlations with weather impacts including precipitation and

high wind index on the right. In most cases, enhanced (re-

duced) ATA is generally associated with enhanced (reduced)

zonal flow in its vicinity, showing consistency between varia-

tions in ATA with baroclinicity. Nevertheless, EOF5 shows

significant ATA variations over southern Europe and the

Mediterranean (Fig. 11c), with only rather weak signals in the

large-scale flow, suggesting that this variability could reflect

internal chaotic variability in the storm track itself. All three

EOFs show significant weather impacts of the same sign to

nearby storm track anomalies (right panels), confirming the

close relationship between ATA and weather impacts.

6. Summary and discussion
In the midlatitudes, storm tracks are responsible for high-

impact weather over most regions, especially during the cool

season. Thus it is useful to quantify storm track variability

using metrics that are strongly related to weather impacts.

While previous studies have shown that several storm track

metrics, such as variance in SLP orv, are highly correlated with

weather impacts such as precipitation, to date no systematic

study has been conducted to evaluate multiple storm track

metrics. In this study, we have developed two independent

frameworks to quantify how well each storm track metric re-

lates to weather impacts including precipitation and high

winds. The first framework searches for the maximum corre-

lation (which we call CORMAX) between weather impacts

and the storm track metric, making use of the monthly time

series of weather impact at each location to compute a one-

point correlation map between the weather impact and the

storm track metric. The second framework evaluates pattern

correlations using CCA. A leave-N-out cross-validation ap-

proach (N5 3 in this study) is used to prevent overfitting due to

the limited number of temporal degrees of freedom. A CCA

model is constructed based on the remaining storm track/

weather impact pairs and used to hindcast the weather impact

for the three left-out months using the storm track anomalies

FIG. 8. As in Fig. 7, but applied to different metrics, all derived from tracking z850: (a),(d) cyclone amplitude, (b),(e) track frequency, and

(c),(f) ACA.
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for these months. Results are quantified by the ACC and FVE

scores by comparing the hindcast weather impacts to those

observed. Results from the two frameworks are largely con-

sistent, with the ACC scores based on the CCA framework

very similar to the CORMAX scores based on the first

framework. The consistency between these two frameworks

gives us confidence that we are likely not overestimating the

correlations between the storm track metrics and weather

impacts.

Among the nine Eulerian variance metrics that we exam-

ined, most of them correlate strongly with weather impacts. In

general, near-surface or lower tropospheric metrics such as

variances in SLP, 850-hPa y0 and z0, and 850-hPa EKE, are

more closely related to weather impacts than their upper-level

counterparts such as 500-hPa z and 300-hPa y0, z0, and EKE.

EKE also performs slightly better than the variance of y0. For
precipitation, the variance of 700-hPa v0 performs best, which

is not surprising given the close association between precipi-

tation and vertical motion. EKE and the variance of z0 at

850 hPa also correlate highly with precipitation. For winds,

850-hPa EKE and SLP variance perform best, which is rea-

sonable given the close relationship between wind speed and

EKE, as well as the quasigeostrophic relationship between

wind and pressure. the variance of v at 700 hPa also relates

quite well with wind impacts. Given that EKE is generally less

noisy compared to v, and is more readily available from cli-

mate model data archives such as CMIP5 or CMIP6, EKE at

850 hPa is a good candidate to be used as an Eulerian metric to

quantify storm track variability and change.

For Lagrangian tracking statistics, ATA, a novel metric

that we developed that combines information from track

frequency and amplitude variations, does best in all cases.

Cyclone amplitude variations do not capture a lot of precip-

itation variability but do quite well in capturing wind impacts.

On the other hand, track frequency does quite well for pre-

cipitation but not as well for wind impacts. Among the five

different definitions of cyclones, spatially filtered (T5–42)

relative vorticity z maxima at the 850-hPa level provides

statistics that are best correlated with both GPCP precipita-

tion and the high wind index. Our limited testing suggests that

FIG. 9. Climatological distribution of Lagrangian metrics derived from tracking z850. (a) ATA (1025 s21

month21). (b) Standard deviation of month-to-month variations in ATA (1025 s21 month21). (c) Track frequency

(month21). (d) Cyclone amplitude (1025 s21). (e) Correlation between month-to-month variations in track fre-

quency and cyclone amplitude at each grid point. (f) As in (e), but between ATA and cyclone amplitude.
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spatial filtering alone to remove large spatial scale back-

ground (and small-scale noise for vorticity) provides statistics

that perform better than applying both spatial and time fil-

tering by removing large-scale background and the monthly

mean. Similar tests removing monthly means from z850 also

produce statistics that are inferior to just spatial filtering alone

(not shown). Nevertheless, more tests should be conducted to see

how the results are sensitive to different spatial and temporal

filtering.

One potential caveat is that previous studies have found that

Lagrangian tracking statistics are somewhat sensitive to the

tracking algorithm used. Here, we tested the sensitivity by

using a very simple tracker that we have developed ourselves.

The tracker and the results are discussed in the supplemental

material (see supplemental text S1). We show there that while

the statistics exhibit some differences, ATA computed from

statistics using the simple tracker is highly correlated with

ATA discussed in section 5, with the leading five EOFs being

FIG. 10. Correlation patterns associated with the two leading EOFs of ATA derived from tracking z850, showing

correlations with (left) PC1 and (right) PC2, for (a) ATA (shading) and 300-hPa monthly mean zonal wind

(contours; contour interval 0.1 with absolute values below 0.2 not shown; same for other panels), (b) track fre-

quency (shading) and cyclone amplitude (contours), (c) EKE850 (shading) and 500-hPa monthly mean geo-

potential height (contours), and (d) GPCP precipitation (shading) and high-wind index (contours).

1 DECEMBER 2020 YAU AND CHANG 10183

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:26 PM UTC



very similar—except that the order of EOFs 1 and 2 is reversed.

ATA derived from the simple tracker also does very well in

predicting weather impacts, performing only slightly worse

than that derived from the more sophisticated tracker used in

the main body of the paper. Hence we are confident that our

results are not very sensitive to the tracker used.

While our focus is on the link between the storm track

metrics and weather impacts, another consideration might be

how predictable these metrics are. To date, few studies have

assessed how well climate models can predict storm track

variability. For Eulerian variance metrics, Yang et al. (2015)

and Zheng et al. (2019) showed that the climate prediction

model of the Geophysical Fluid Dynamics Laboratory and the

models participating in the North American Multi-Model

Ensemble can predict storm track variability [in terms of a

metric similar to Var(SLP)] related to El Niño–Southern
Oscillation (ENSO) at least out to several months in advance,

while Zheng et al. (2019, 2020, manuscript submitted to

Wea. Forecasting) showed that models participating in the

Seasonal to Subseasonal Experiment and the Subseasonal

Experiment can predict Var(SLP) with some skill out to weeks

3–4. For the subseasonal case, the source of predictability ap-

pears to be ENSO and polar vortex variations.

For Lagrangian track statistics, Lukens and Berbery (2019)

assessed how well the National Oceanic and Atmospheric

Administration (NOAA) Coupled Forecast System version 2

(CFSv2) can predict cyclone frequency and amplitude by

tracking lower tropospheric potential vorticity (PV) anoma-

lies. Their results suggested that the prediction skill for a

single member is rather limited, with the root-mean-square

error nearly the same as the standard deviation at most lo-

cations, even after bias corrections. Nevertheless, Zheng

et al. (2019, 2020, manuscript submitted to Wea. Forecasting)

suggested that combining different ensemble members into

either a single model or a multimodel ensemble can signifi-

cantly improve the prediction skill for variance statistics, and

we hypothesize that even track statistics can be predicted to

certain extent using ensemble prediction techniques.

As far as we know, no studies have assessed howwell current

climatemodels can predict EKE850 orATA, andwe plan to do

that next. Nevertheless, our results suggest that ATA exhibits

coherent large-scale variations (see Figs. 10 and 11) and is

FIG. 11. Correlation patterns for EOFs 3–5 of ATA derived from tracking z850. Correlations with (top) PC3,

(middle) PC4, and (bottom) PC5 for (a)–(c) ATA (shading) and 300-hPa monthly mean zonal wind and (d)–(f)

GPCP precipitation (shading) and high-wind index (contours).
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highly correlated with variability in the large-scale flow and

other variance statistics; hence, we expect that ATA is likely to

be better predicted than other more noisy Lagrangian track

statistics such as cyclone amplitude or cyclone frequency.

Another potential application is to examine storm track

changes under climate change projections. Previous studies

have tried to link model projected precipitation changes to

changes in Var(SLP) (Chang 2014; Chang et al. 2015), the

number and strength of cyclones (Zappa et al. 2015), or track

frequency and intensity (Osburn et al. 2018). Here we have

found that EKE850 and ATA are more highly correlated with

precipitation and wind impacts than Var(SLP) and track

frequency/amplitude, and hence it will be of interest to reassess

the weather impacts of projected changes in storm tracks by

analyzing projected changes in EKE850 and ATA.

Finally, in this study, we developed two frameworks to assess

how well storm track metrics are related to weather impacts,

and developed a novel Lagrangian storm track metric, ATA,

that displays coherent large-scale variability and is highly

correlated to weather impacts. Nevertheless, since we have not

exhaustively tested all available storm track metrics, we do not

claim that EKE850 and ATA are the ‘‘best’’ storm track

metrics. In fact, the ‘‘best’’ metric may depend on the geo-

graphical location or season, although thus far our experience

is that among Lagrangian cyclone statistics, ATA derived from

z850 always performs better than the other Lagrangian met-

rics. This will be discussed in more details in Part 2 of this se-

ries. The frameworks we have developed can be used to assess

other metrics. In addition, these frameworks can be adopted to

assess other metrics using different criteria. Given that a large

number of metrics have been used to quantify storm track

variability, the frameworks developed in this study can be used

to help pick out a small number of metrics that are closely

related to the objective of each individual user.
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